Stellar Basins of Gravitationally Bound Particles

Ken Van Tilburg (NYU/Flatiron CCA)

06-Apr-2021, 17:00-18:00 (3 years ago)

Abstract: I will describe and explore the consequences of a peculiar physical phenomenon: volumetric stellar emission into gravitationally bound orbits of weakly coupled particles such as axions, moduli, hidden photons, and neutrinos. While only a tiny fraction of the instantaneous luminosity of a star (the vast majority of the emission is into relativistic modes), the continual injection of these particles into a small part of phase space causes them to accumulate over astrophysically long time scales, forming what I call a "stellar basin", in analogy with the geologic kind. The energy density of the Solar basin can surpass that of the relativistic Solar flux at Earth's location after only a million years, for any sufficiently long-lived particle produced through an emission process whose matrix elements are unsuppressed at low momentum. This observation has immediate and striking consequences for direct detection experiments---including new limits on axion and hidden-photon parameter space independent of dark matter assumptions---and opens up prospects for indirect detection of weakly interacting particles around stars. [Based on arxiv.org/abs/2006.12431 and arxiv.org/abs/2008.08594, and ongoing work.]

HEP - phenomenologyHEP - theorymathematical physics

Audience: researchers in the topic


NHETC Seminar

Series comments: Description: Weekly research seminar of the NHETC at Rutgers University

Livestream link is available on the webpage.

Organizers: Christina Pettola*, Sung Hak Lim, Vivek Saxena*, Erica DiPaola*
*contact for this listing

Export talk to