Квантовая «ревизия» теоремы Пифагора
Ю. В. Брежнев
Abstract: Странность этого утверждения только кажущаяся и оно может быть сформулировано даже более экстравагантно. Мы даем «единственно правильное» понимание, которое стоит за реальным смыслом теоремы Пифагора. Хотя речь идет о классическом математическом утверждении, его переформулировка мотивирована квантовой темой. А именно, проблемой понимания и вывода знаменитого правила квантовой вероятности - правила Борна, - которое записывается через квадрат модуля $|a|^2$. Если кратко, то «почему квадрат»? Есть прямой ответ на этот вопрос, а появление этих квадратов, модулей и двоек - комплексной и обычной вещественной - оказываются совершенно однотипным.
Ключевыми словами к материалу является задача последовательного логического построения исчисления (calculus) на векторном пространстве. Тогда рассмотрение известных правил параллелограмма, неравенства треугольника, понятия углов, аксиом скалярного произведения, нормы, топологий и т.д. достаточно заменить на задачу построения количественных величин на векторах. Отсюда будет следовать сначала собственно Пифагорово утверждение и только потом (!) - вышеуказанные объекты. Теорема, при этом, перестает быть теоремой, превращаясь, грубо говоря, в некоторое естественное минималистическое определение; подробности последуют. Сам квадрат в «теореме» появляется как единственно возможное следствие. Перечисленные выше элементы школьной геометрии становятся, в свою очередь, производными от Пифагорова квадрата, с последующей ревизией первичности понятия длины. С квантовыми (комплексными) аналогами - ситуация точно такая же. Более того, именно количественно-статистическая идеология и природа квантового правила Борна дает подсказку к «новому взгляду на» и наиболее убедительные «объяснения к» этой древней греческой теореме.
mathematical physicsanalysis of PDEsclassical analysis and ODEsdynamical systemsnumerical analysisexactly solvable and integrable systemsfluid dynamics
Audience: researchers in the topic
Mathematical models and integration methods
Organizers: | Oleg Kaptsov, Sergey P. Tsarev*, Yury Shan'ko* |
*contact for this listing |