Cuspidal $p$-adic deformations of critical Eisenstein series for $G_2$
Sam Mundy (Columbia University)
08-Jan-2021, 23:00-00:00 (5 years ago)
Abstract: In this talk, I will explain how (under certain standard conjectures of Arthur) Urban's eigenvariety allows us to $p$-adically deform, in generically cuspidal families, critical $p$-stabilizations of certain maximal parabolic Eisenstein series for $G_2$. This has consequences for the symmetric cube Bloch--Kato conjecture.
algebraic geometrynumber theory
Audience: researchers in the topic
UCSB Seminar on Geometry and Arithmetic
| Organizers: | Adebisi Agboola, Francesc Castella*, Zheng Liu*, Xiaolei Zhao* |
| *contact for this listing |
Export talk to
