Orthogonal systems of spline wavelets as unconditional bases in Sobolev spaces
Rajula Srivastava (UW Madison)
12-Oct-2020, 21:00-22:00 (5 years ago)
Abstract: We exhibit the necessary range for which functions in the Sobolev spaces $L^s_p$ can be represented as an unconditional sum of orthonormal spline wavelet systems, such as the Battle-Lemari\'e wavelets. We also consider the natural extensions to Triebel-Lizorkin spaces. This builds upon, and is a generalization of, previous work of Seeger and Ullrich, where analogous results were established for the Haar wavelet system.
analysis of PDEsclassical analysis and ODEsfunctional analysis
Audience: researchers in the topic
OARS Online Analysis Research Seminar
Series comments: Visit our homepage for further information. Some recordings available on YouTube
| Organizers: | Zane Li*, Cosmin Pohoata*, Joris Roos*, Ziming Shi |
| *contact for this listing |
Export talk to
