Symmetry and Structure within the Log-Brunn-Minkowski Conjecture
Károly Böröczky (Central European University)
Abstract: After reviewing some formulations of the Log-Brunn-Minkowski Conjecture in R^n in terms of Monge-Ampere equations, of Hilbert Operator and of Brunn-Minkowski Theory, I will report on some recent advances, like Livshyts' and Kolesnikov's improvement on the fundamental approach of Milman and Kolesnikov, and the verification of the conjecture for bodies with n hyperplane symmetries by Kalantzopoulos and myself using an idea due to Bathe and Fradelizi.
analysis of PDEsmetric geometry
Audience: researchers in the topic
Online asymptotic geometric analysis seminar
Series comments: The link: technion.zoom.us/j/99202255210
If you are interested in giving a talk, please let one of the organizers know. Also, please suggest speakers which you would like to hear talk. Most talks are 50 minutes, but some 20-minute talks will be paired up as well. The talks will be video recorded conditioned upon the speakers' agreement.
Organizers: | Galyna Livshyts*, Liran Rotem*, Dmitry Ryabogin, Konstantin Tikhomirov, Artem Zvavitch |
*contact for this listing |