Dark Unification: a UV-complete Theory of Asymmetric Dark Matter

Clara Murgui (Caltech)

01-Mar-2022, 19:30-20:30 (2 years ago)

Abstract: Motivated by the observed ratio of dark matter to baryon mass densities, which is around a factor 5, we propose a theory of dark-color unification. In this theory, the dark to visible baryon masses are fixed by the ratio of dark to visible confinement scales, which are determined to be nearby in mass through the unification of the dark and visible gauge theories at a high scale. Together with a mechanism for darko-baryo-genesis, which arises naturally from the grand unification sector, the mass densities of the two sectors must be nearby, explaining the observed mass density of dark matter. We focus on the simplest possible example of such a theory, where Standard Model color SU(3)c is unified with dark color SU(2)D into SU(5) at an intermediate scale of around 10^8 -10^9 GeV. The dark baryon consists of two dark quarks in an isotriplet configuration. There are a range of important cosmological, astrophysical and collider signatures to explore, including dark matter self-interactions, early matter domination from the dark hadrons, gravitational wave signatures from the hidden sector phase transition, contributions to flavor observables, as well as Hidden Valley-like signatures at colliders.

HEP - phenomenologyHEP - theorymathematical physics

Audience: researchers in the topic


NHETC Seminar

Series comments: Description: Weekly research seminar of the NHETC at Rutgers University

Livestream link is available on the webpage.

Organizers: Christina Pettola*, Sung Hak Lim, Vivek Saxena*, Erica DiPaola*
*contact for this listing

Export talk to