Solutions to the equations of acoustics of inhomogeneous media and gas dynamics
O. Kaptsov (FRC ICT, Novosibirsk, Russia)
Abstract: This paper considers one-dimensional equations of acoustics equations of inhomogeneous media and the system of gas dynamics equations with constant entropy. Using the Riemann approach, the gas dynamics equations are reduced to a second-order linear hyperbolic equation with variable coefficients. Solutions to this equation are constructed using Euler–Darboux transformations. This allows us to find new exact solutions of the equations of acoustics and gas dynamics, depending on two arbitrary functions.
mathematical physicsanalysis of PDEsclassical analysis and ODEsdynamical systemsnumerical analysisexactly solvable and integrable systemsfluid dynamics
Audience: researchers in the topic
Mathematical models and integration methods
| Organizers: | Oleg Kaptsov, Sergey P. Tsarev*, Yury Shan'ko* |
| *contact for this listing |
