Lumps and lump chain solutions of the KP-I equation

Dmitry Zakharov

20-Oct-2021, 12:00-13:00 (3 years ago)

Abstract: The Kadomstev—Petviashvili equation is one of the fundamental equations in the theory of integrable systems. The KP equation comes in two physically distinct forms: KP-I and KP-II. The KP-I equation has a large family of rational solutions known as lumps. A single lump is a spatially localized soliton, and lumps can scatter on one another or form bound states. The KP-II equation does not have any spatially localized solutions, but has a rich family of line soliton solutions.

I will discuss two new families of solutions of the KP-I equation, obtained using the Grammian form of the tau-function. The first is the family of lump chain solutions. A single lump chain consists of a linear arrangement of lumps, similar to a line soliton of KP-II. More generally, lump chains can form evolving polygonal arrangements whose structure closely resembles that of the line soliton solutions of KP-II. I will also show how lump chains and line solitons may absorb, emit, and reabsorb individual lumps.

mathematical physicsanalysis of PDEsclassical analysis and ODEsdynamical systemsnumerical analysisexactly solvable and integrable systemsfluid dynamics

Audience: researchers in the topic


Mathematical models and integration methods

Organizers: Oleg Kaptsov, Sergey P. Tsarev*, Yury Shan'ko*
*contact for this listing

Export talk to