On generalized simple waves in continuum mechanics
S.V. Meleshko
Abstract: One of the well-known classes of solutions of many models of continuum mechanics is a set of solutions called simple wave-type solutions. From the method of differential constraints point of view, this class of solutions is described by homogeneous differential constraints. Application of the method of differential constraints allows one to generalize this class. The main feature of this class of solutions is that finding a solution of the original system of equations is reduced to solving a system of ordinary differential equations. In particular, the presentation will show that finding a solution of any Cauchy problem of a homogeneous system of equations written in Riemann invariants, admitting a differential constraint, is reduced to solving the Cauchy problem of system of ordinary differential equations. This is similar to the method of characteristics for a partial differential equation with a single dependent variable. Illustrations of solutions for some initial data are given. Several models will be demonstrated in the presentation.
mathematical physicsanalysis of PDEsclassical analysis and ODEsdynamical systemsnumerical analysisexactly solvable and integrable systemsfluid dynamics
Audience: researchers in the topic
Mathematical models and integration methods
Organizers: | Oleg Kaptsov, Sergey P. Tsarev*, Yury Shan'ko* |
*contact for this listing |