# The local motivic monodromy conjecture for simplicial nondegenerate singularities

*Matt Larson (Stanford)*

**21-Oct-2022, 19:00-20:00 (8 months ago)**

**Abstract: **The monodromy conjecture predicts a relationship between the motivic zeta function of a hypersurface V(f), which governs the number of solutions to f = 0 (mod p^n) if f has integer coefficients and p is a sufficiently large prime, and the eigenvalues of the monodromy action on the cohomology of the Milnor fiber, which is a topological invariant of the complex hypersurface. When f is nondegenerate with respect to its Newton polyhedron, which is true for "generic" polynomials, there are combinatorial formulas for both the motivic zeta function and the eigenvalue of monodromy. I will describe recent results (joint with S. Payne and A. Stapledon) which prove a version of the monodromy conjecture for nondegenerate polynomials which have a simplicial Newton polyhedron.

algebraic geometry

Audience: researchers in the topic

**Stanford algebraic geometry seminar **

**Series comments: **The seminar was online for a significant period of time, but for now is solely in person.
More seminar information (including slides and videos, when available): agstanford.com

Organizer: | Ravi Vakil* |

*contact for this listing |