Properness of the K-moduli space

Fri Dec 17, 20:00-21:00 (8 days from now)

Abstract: K-stability is an algebraic condition that characterizes the existence of Kahler-Einstein metrics on Fano varieties. Recently there has been a lot of work on the construction of the K-moduli space, i.e. a good moduli space parametrizing K-polystable Fano varieties. Motivated by results in differential geometry, it is conjectured that this K-moduli space is proper and projective. In this talk, I'll discuss some recent progress in birational geometry that leads to a full solution of this conjecture. Based on joint work with Yuchen Liu and Chenyang Xu.

algebraic geometry

Audience: researchers in the topic

( chat )

Comments: The synchronous discussion for Ziquan Zhuang’s talk is taking place not in zoom-chat, but at tinyurl.com/2021-12-17-zz (and will be deleted after ~3-7 days).


Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too: stanford.zoom.us/j/95272114542

More seminar information (including slides and videos, when available): agstanford.com

Organizer: Ravi Vakil*
*contact for this listing

Export talk to