Semiorthogonal decompositions and dimension

Noah Olander (Columbia University)

10-Dec-2021, 20:00-21:00 (14 months ago)

Abstract: A conjecture of Orlov predicts that we can recover the dimension of a smooth quasi-projective variety from its derived category via the Rouquier dimension. We explain the meaning of the conjecture and some things we know about it, then we explain the proof of a weakened version. We use this to prove a fact predicted by Orlov’s conjecture: If the derived category of X appears as a component of a semiorthogonal decomposition of the derived category of Y (X,Y smooth proper varieties) then the dimension of X is at most the dimension of Y.

algebraic geometry

Audience: researchers in the topic

( chat | slides | video )

Comments: The synchronous discussion for Noah Olander’s talk is taking place not in zoom-chat, but at (and will be deleted after ~3-7 days).

Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too:

More seminar information (including slides and videos, when available):

Organizer: Ravi Vakil*
*contact for this listing

Export talk to