Logarithmic resolution of singularities via multi-weighted blow-ups

Ming Hao Quek (Brown University)

24-Sep-2021, 19:00-20:00 (18 months ago)

Abstract: We revisit the theorem of Hironaka that one can resolve the singularities of a singular, reduced closed subscheme X of a smooth scheme Y over a field of characteristic zero, such that the singular locus of X is transformed to a simple normal crossings divisor. We propose a computable yet efficient algorithm, which accomplishes this by taking successive proper transforms along a sequence of multi-weighted blow-ups, where at each step, the worst singular locus is blown up, and one witnesses an immediate improvement in singularities. Here, multi-weighted blow-ups are necessary to ensure that the ambient space remains smooth (in fact, also logarithmically smooth with respect to the logarithmic structure associated to the exceptional divisors), although one has to work more broadly with Artin stacks. This is joint work with Dan Abramovich.

algebraic geometry

Audience: researchers in the topic

( slides | video )

Stanford algebraic geometry seminar

Series comments: The seminar is sometimes online, and sometimes in person.

For zoom talks: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too: stanford.zoom.us/j/95272114542

More seminar information (including slides and videos, when available): agstanford.com

Organizer: Ravi Vakil*
*contact for this listing

Export talk to