Constructing logarithmic moduli

Dhruv Ranganathan (Cambridge)

Fri May 28, 19:00-20:00 (5 months ago)

Abstract: In recent work, Davesh Maulik and I built a theory “logarithmic” Donaldson-Thomas invariants, and in the process we constructed a new version of the Hilbert scheme of curves: one that is sensitive to the manner in which subschemes interact with a chosen simple normal crossings divisor. There are two inputs. The first is a piece of geometry, which comes from study torus orbit closures in Hilbert schemes, following ideas of Kapranov and Tevelev. The second is an exceedingly useful piece of formalism, in the shape of tropical moduli spaces and an associated collection of Artin stacks. I’ll try to explain how to combine these ingredients to get what we get, and also share some general lessons that we learned while working this stuff out.

algebraic geometry

Audience: researchers in the topic

( video )

Comments: The synchronous discussion for Dhruv Ranganathan’s talk is taking place not in zoom-chat, but at tinyurl.com/2021-05-28-dr (and will be deleted after ~3-7 days).


Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too: stanford.zoom.us/j/95272114542

More seminar information (including slides and videos, when available): agstanford.com

Organizer: Ravi Vakil*
*contact for this listing

Export talk to