Iterated p-adic integration on semistable curves

Eric Katz (Ohio State)

Fri May 21, 19:00-20:00 (7 days from now)

Abstract: How do you integrate a 1-form on an algebraic curve over the p-adic numbers? One can integrate locally, but because the topology is totally disconnected, it's not possible to perform analytic continuation. For good reduction curves, this question was answered by Coleman who introduced analytic continuation by Frobenius. For bad reduction curves, there are two notions of integration: a local theory that is easy to compute; and a global single-valued theory that is useful for number theoretic applications. We discuss the relationship between these integration theories, concentrating on the p-adic analogue of Chen's iterated integration which is important for the non-Abelian Chabauty method. We explain how to use combinatorial ideas, informed by tropical geometry and Hodge theory, to compare the two integration theories and outline an explicit approach to computing these integrals. This talk will start from the beginning of the story and requires no background besides some fluency in algebraic geometry and topology. This is joint work with Daniel Litt.

algebraic geometry

Audience: researchers in the topic

Comments: The synchronous discussion for Eric Katz’s talk is taking place not in zoom-chat, but at (and will be deleted after ~3-7 days).

Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too:

More seminar information (including slides and videos, when available):

Organizer: Ravi Vakil*
*contact for this listing

Export talk to