Logarithmic resolution of singularities

Michael Temkin (HUJI)

23-Apr-2021, 19:00-20:00 (21 months ago)

Abstract: I will talk about a recent series of works with Abramovich and Wlodarczyk, where a logarithmic analogue of the classical resolution of singularities of schemes in characteristic zero is constructed. Already for usual schemes, the logarithmic algorithm is faster and more functorial, though as a price one has to work with log smooth ambient orbifolds rather than smooth ambient manifolds. But the main achievement is that essentially the same algorithm resolves log schemes and even morphisms of log schemes, yielding a major generalization of various semistable reduction theorems.

algebraic geometry

Audience: researchers in the topic

( slides | video )

Comments: The synchronous discussion for Michael Temkinā€™s talk is taking place not in zoom-chat, but at tinyurl.com/2021-04-23-mt (and will be deleted after ~3-7 days).

Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too: stanford.zoom.us/j/95272114542

More seminar information (including slides and videos, when available): agstanford.com

Organizer: Ravi Vakil*
*contact for this listing

Export talk to