The Chow rings of $M_7$, $M_8$, and $M_9$

Samir Canning (UC San Diego)

Fri Apr 16, 19:00-20:00 (3 days ago)

Abstract: The rational Chow ring of the moduli space of smooth curves is known when the genus is at most $6$ by work of Mumford ($g=2$), Faber ($g=3$, $4$), Izadi ($g=5$), and Penev-Vakil ($g=6$). In each case, it is generated by the tautological classes. On the other hand, van Zelm has shown that the bielliptic locus is not tautological when $g=12$. In recent joint work with Hannah Larson, we show that the Chow rings of $M_7$, $M_8$, and $M_9$ are generated by tautological classes, which determines the Chow ring by work of Faber. I will explain an overview of the proof with an emphasis on the special geometry of curves of low genus and low gonality.

algebraic geometry

Audience: researchers in the topic

( slides )

Comments: The synchronous discussion for Sam Canning’s talk is taking place not in zoom-chat, but at tinyurl.com/2021-04-16-sc (and will be deleted after ~3-7 days).


Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880

If you have registered once, you are always registered, and can just join the talk. Link for talk once registered: in your email, or else probably: stanford.zoom.us/j/95272114542

More seminar information (including slides and videos, when available): agstanford.com

Organizer: Ravi Vakil*
*contact for this listing

Export talk to