Normal bundles of rational curves and separably rationally connected varieties

Geoff Smith (UIC)

Fri May 7, 19:00-20:00 (6 months ago)

Abstract: In positive characteristic, there are two different notions of rational connectedness: a variety can be rationally connected or separably rationally connected (SRC). SRC varieties share many of the nice properties that rationally connected varieties have in characteristic 0. But, while it is conjectured that smooth Fano varieties are SRC, it is only known that they are rationally connected. In the last decade, several mathematicians have come up with different ways to show that general Fano complete intersections are SRC. In this talk, I'll explain this story, and then discuss an approach Izzet Coskun and I are using to show that other sorts of varieties are SRC by comparing the normal bundle of a rational curve on a variety and its normal bundle to some subvariety containing it. For instance, I'll show that a Fano complete intersection of hypersurfaces each of degree at least 3 on a Grassmannian is SRC.

algebraic geometry

Audience: researchers in the topic

( slides | video )

Comments: The discussion for Geoff Smith’s talk is taking place not in zoom-chat, but at tinyurl.com/2021-05-07-gs (and will be deleted after ~3-7 days).


Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too: stanford.zoom.us/j/95272114542

More seminar information (including slides and videos, when available): agstanford.com

Organizer: Ravi Vakil*
*contact for this listing

Export talk to