\'Etale K-theory and motivic cohomology

Akhil Mathew (University of Chicago)

06-Nov-2020, 20:00-21:00 (4 months ago)

Abstract: Two key features of algebraic K-theory are its failure to satisfy \'etale descent, and its motivic filtration in terms of higher Chow groups in the case of smooth schemes over a field (but expected more generally). I will explain a description of \'etale K-theory, which is the universal approximation to K-theory that satisfies \'etale descent; this is joint work with Dustin Clausen. Moreover, following the recent work of Bhatt--Morrow--Scholze on topological cyclic homology, I will also explain a construction of (an analog of) the motivic filtration on \'etale K-theory (and \'etale motivic cohomology) for arbitrary schemes (work in progress with Bhargav Bhatt and Dustin Clausen).

algebraic geometry

Audience: researchers in the topic

Comments: The discussion for Akhil Mathew’s talk is taking place not in zoom-chat, but at tinyurl.com/2020-11-06-am (and will be deleted after ~3-7 days).

Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880

If you have registered once, you are always registered, and can just join the talk. Link for talk once registered: in your email, or else probably: stanford.zoom.us/j/95272114542

More seminar information (including slides and videos, when available): agstanford.com

Organizer: Ravi Vakil*
*contact for this listing

Export talk to