The Torelli map restricted to the hyperelliptic locus
Aaron Landesman (Stanford)
Abstract: The classical Torelli theorem states that the Torelli map, sending a curve to its Jacobian, is injective on points. However, the Torelli map is not injective on tangent spaces at points corresponding to hyperelliptic curves. This leads to the natural question: If one restricts the Torelli map to the locus of hyperelliptic curves, is it then an immersion?
We give a complete answer to this question, starting out by describing the classical history and several surprising foundational gaps in the literature. Along the way, we will learn about Shinichi Mochizuki's valuative criterion for locally closed immersions and its relation to Brian Conrad's library app idea.
algebraic geometrynumber theory
Audience: researchers in the topic
( paper )
Comments: The discussion for Aaron Landesman’s talk is taking place not in zoom-chat, but at tinyurl.com/2020-10-30-al (and will be deleted after ~3-7 days).
Stanford algebraic geometry seminar
Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880
If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too: stanford.zoom.us/j/95272114542
More seminar information (including slides and videos, when available): agstanford.com
Organizer: | Ravi Vakil* |
*contact for this listing |