Simplicial generation of Chow rings of matroids

Chris Eur (Stanford)

Fri Sep 4, 19:00-20:00 (3 months ago)

Abstract: We present a new set of generators for the Chow ring of a matroid. We show that these generators behave like base-point-free divisors by establishing that (i) they correspond to matroid operations that combinatorially mirror hyperplane pullbacks, and (ii) the volume polynomial with respect to these generators satisfies Hodge-type inequalities. We thereby generalize Postnikov's results on generalized permutohedra, and also give a simplified proof of the combinatorially relevant portion of the Hodge theory of matroids developed by Adiprasito-Huh-Katz. No knowledge of matroids will be assumed. This is joint work with Spencer Backman and Connor Simpson.

algebraic geometry

Audience: researchers in the topic

( chat )

Comments: The discussion for Christopher Eur’s talk is taking place not in zoom-chat, but at tinyurl.com/2020-09-04-ce (and will be deleted after 3-7 days).


Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880

If you have registered once, you are always registered, and can just join the talk. Link for talk once registered: in your email, or else probably: stanford.zoom.us/j/95272114542

More seminar information (including slides and videos, when available): agstanford.com

Organizer: Ravi Vakil*
*contact for this listing

Export talk to