Virtual cycle on the moduli space of maps to a complete intersection

Rachel Webb (UC Berkeley)

18-Sep-2020, 19:00-20:00 (13 months ago)

Abstract: A driving question in Gromov-Witten theory is to relate the invariants of a complete intersection to the invariants of the ambient variety. In genus-zero this can often be done with a ``twisted theory,'' but this fails in higher genus. Several years ago, Chang-Li presented the moduli space of p-fields as a piece of the solution to the higher-genus problem, constructing the virtual cycle on the space of maps to the quintic 3-fold as a cosection localized virtual cycle on a larger moduli space (the space of p-fields). Their result is analogous to the classical statement that the Euler class of a vector bundle is the class of the zero locus of a generic section. I will discuss work joint with Qile Chen and Felix Janda where we extend Chang-Li's result to a more general setting, a setting that includes standard Gromov-Witten theory of smooth orbifold targets and quasimap theory of GIT targets.

algebraic geometry

Audience: researchers in the topic


Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too: stanford.zoom.us/j/95272114542

More seminar information (including slides and videos, when available): agstanford.com

Organizer: Ravi Vakil*
*contact for this listing

Export talk to