Brill--Noether theory over the Hurwitz space

Hannah Larson (Stanford University)

21-Aug-2020, 19:00-20:00 (9 months ago)

Abstract: Let $C$ be a curve of genus $g$. A fundamental problem in the theory of algebraic curves is to understand maps of $C$ to projective space of dimension r of degree d. When the curve $C$ is general, the moduli space of such maps is well-understood by the main theorems of Brill-Noether theory. However, in nature, curves $C$ are often encountered already equipped with a map to some projective space, which may force them to be special in moduli. The simplest case is when $C$ is general among curves of fixed gonality. Despite much study over the past three decades, a similarly complete picture has proved elusive in this case. In this talk, I will discuss recent joint work with Eric Larson and Isabel Vogt that completes such a picture, by proving analogs of all of the main theorems of Brill--Noether theory in this setting.

algebraic geometry

Audience: researchers in the topic

Comments: The discussion for Hannah Larson’s talk is taking place not in zoom-chat, but at (and will be deleted after 3-7 days).

Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at Password: 362880

If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too:

More seminar information (including slides and videos, when available):

Organizer: Ravi Vakil*
*contact for this listing

Export talk to