Wall-crossing phenomena for Newton-Okounkov bodies
Laura Escobar (Washington University St. Louis)
Abstract: A Newton-Okounkov body is a convex set associated to a projective variety, equipped with a valuation. These bodies generalize the theory of Newton polytopes. Work of Kaveh-Manon gives an explicit link between tropical geometry and Newton-Okounkov bodies. We use this link to describe a wall-crossing phenomenon for Newton-Okounkov bodies. This is joint work with Megumi Harada.
algebraic geometrycombinatorics
Audience: researchers in the topic
Comments: The discussion for Laura Escobar Vega’s talk is taking place not in zoom-chat, but at tinyurl.com/2020-07-17-lev (and will be deleted after 3-7 days).
Stanford algebraic geometry seminar
Series comments: This seminar requires both advance registration, and a password. Register at stanford.zoom.us/meeting/register/tJEvcOuprz8vHtbL2_TTgZzr-_UhGvnr1EGv Password: 362880
If you have registered once, you are always registered for the seminar, and can join any future talk using the link you receive by email. If you lose the link, feel free to reregister. This might work too: stanford.zoom.us/j/95272114542
More seminar information (including slides and videos, when available): agstanford.com
Organizer: | Ravi Vakil* |
*contact for this listing |