Boundedness of singularities and discreteness of local volumes
Ziquan Zhuang (Johns Hopkins)
Abstract: The local volume of a Kawamata log terminal (klt) singularity is an invariant that plays a central role in the local theory of K-stability. By the stable degeneration theorem, every klt singularity has a volume preserving degeneration to a K-semistable Fano cone singularity. I will talk about a joint work with Chenyang Xu on the boundedness of Fano cone singularities when the volume is bounded away from zero. This implies that local volumes only accumulate around zero in any given dimension.
algebraic geometry
Audience: researchers in the topic
Stanford algebraic geometry seminar
Series comments: The seminar was online for a significant period of time, but for now is solely in person. More seminar information (including slides and videos, when available): agstanford.com
| Organizer: | Ravi Vakil* |
| *contact for this listing |
