Boundedness of singularities and discreteness of local volumes

Ziquan Zhuang (Johns Hopkins)

11-Oct-2024, 19:00-20:00 (14 months ago)

Abstract: The local volume of a Kawamata log terminal (klt) singularity is an invariant that plays a central role in the local theory of K-stability. By the stable degeneration theorem, every klt singularity has a volume preserving degeneration to a K-semistable Fano cone singularity. I will talk about a joint work with Chenyang Xu on the boundedness of Fano cone singularities when the volume is bounded away from zero. This implies that local volumes only accumulate around zero in any given dimension.

algebraic geometry

Audience: researchers in the topic


Stanford algebraic geometry seminar

Series comments: The seminar was online for a significant period of time, but for now is solely in person. More seminar information (including slides and videos, when available): agstanford.com

Organizer: Ravi Vakil*
*contact for this listing

Export talk to