Infinite dimensional geometric invariant theory and gauged Gromov-Witten theory
Daniel Halpern-Leistner (Cornell)
Abstract: Harder-Narasimhan (HN) theory gives a structure theorem for principal G bundles on a smooth projective curve. A bundle is either semistable, or it admits a canonical filtration whose associated graded bundle is semistable in a graded sense. After reviewing recent advances in extending HN theory to arbitrary algebraic stacks, I will discuss work with Andres Fernandez Herrero applying this general machinery to the stack of maps from a curve C to a quotient stack X/G, where G is a reductive group and X is an affine G-scheme. Our main immediate application is to compute generating functions for K-theoretic gauged Gromov-Witten invariants. The method we develop to analyze this moduli problem is an infinite dimensional analog of geometric invariant theory, which is potentially applicable to a much broader range of moduli problems.
algebraic geometry
Audience: researchers in the topic
Stanford algebraic geometry seminar
Series comments: The seminar was online for a significant period of time, but for now is solely in person. More seminar information (including slides and videos, when available): agstanford.com
| Organizer: | Ravi Vakil* |
| *contact for this listing |
