Moduli spaces of quartic hyperelliptic K3 surfaces via K-stability

Yuchen Liu (Yale)

29-May-2020, 17:45-18:45 (8 months ago)

Abstract: A general polarized hyperelliptic K3 surfaces of degree 4 is a double cover of $\mathbf{P }^ 1 \times \mathbf{P}^1$ branched along a bidegree $(4,4)$ curve. Classically there are two compactifications of their moduli spaces: one is the GIT quotient of $(4,4)$ curves, the other is the Baily-Borel compactification of their periods. We show that K-stability provides a natural modular interpolation between these two compactifications. This provides a new aspect toward a recent result of Laza-O'Grady. Based on joint work in progress with K. Ascher and K. DeVleming.

algebraic geometry

Audience: researchers in the topic

Comments: The discussion for Yuchen Liu’s talk is taking place not in zoom-chat, but at (and will be deleted after 3-7 days).

Stanford algebraic geometry seminar

Series comments: This seminar requires both advance registration, and a password. Register at Password: 362880

If you have registered once, you are always registered, and can just join the talk. Link for talk once registered: in your email, or else probably:

More seminar information (including slides and videos, when available):

Organizer: Ravi Vakil*
*contact for this listing

Export talk to