An O-acyclic variety of even index
Fumiaki Suzuki (UCLA Mathematics)
Abstract: I will construct a family of Enriques surfaces parametrized by P^1 such that any multi-section has even degree over the base P^1. Over the function field of a complex curve, this gives the first example of an O-acyclic variety (H^i(X,O)=0 for i>0) whose index is not equal to one, and an affirmative answer to a question of Colliot-Thélène and Voisin. I will also discuss applications to related problems, including the integral Hodge conjecture and Murre’s question on universality of the Abel-Jacobi maps. This is joint work with John Christian Ottem.
algebraic geometry
Audience: researchers in the topic
ZAG (Zoom Algebraic Geometry) seminar
Series comments: Description: ZAG seminar
The seminar takes place on Tuesdays and Thursdays via Zoom. Zoom passwords are given via mailing list on Fridays. To join the mailing list go to the website.
If you use a calendar system, you can see the individual seminars at bit.ly/zag-seminar-calendar
Times vary to accommodate speakers time zones but times will be announced in GMT time.
| Organizers: | Jesus Martinez Garcia*, Ivan Cheltsov*, Jungkai Chen, Jérémy Blanc, Ernesto Lupercio, Yuji Odaka, Zsolt Patakfalvi, Julius Ross, Cristiano Spotti, Chenyang Xu |
| *contact for this listing |
