Counting level-1, quaternionic automorphic representations on $G_2$

Rahul Dalal (Johns Hopkins)

28-Oct-2021, 21:00-22:00 (2 years ago)

Abstract: Quaternionic automorphic representations are one attempt to generalize to other groups the special place holomorphic modular forms have among automorphic representations of $GL_2$. Like holomorphic modular forms, they are defined by having their real component be one of a particularly nice class (in this case, called quaternionic discrete series). We count quaternionic automorphic representations on the exceptional group $G_2$ by developing a $G_2$ version of the classical Eichler-Selberg trace formula for holomorphic modular forms.

There are two main technical difficulties. First, quaternionic discrete series come in L-packets with non-quaternionic members and standard invariant trace formula techniques cannot easily distinguish between discrete series with real component in the same L-packet. Using the more modern stable trace formula resolves this issue. Second, quaternionic discrete series do not satisfy a technical condition of being "regular", so the trace formula can a priori pick up unwanted contributions from automorphic representations with non-tempered components at infinity. Applying some computations of Mundy, this miraculously does not happen for our specific case of quaternionic representations on $G_2$.

Finally, we are only studying level-1 forms, so we can apply some tricks of Chenevier and Taïbi to reduce the problem to counting representations on the compact form of $G_2$ and certain pairs of modular forms. This avoids involved computations on the geometric side of the trace formula.

number theory

Audience: researchers in the discipline

( paper )

Comments: 30 min pre-talk before


UCSD number theory seminar

Series comments: Most talks are preceded by a pre-talk for graduate students and postdocs. The pre-talks start 40 minutes prior to the posted time (usually at 1:20pm Pacific) and last about 30 minutes.

Organizers: Kiran Kedlaya*, Alina Bucur, Aaron Pollack, Cristian Popescu, Claus Sorensen
*contact for this listing

Export talk to