Brill--Noether theory over the Hurwitz space
Isabel Vogt (University of Washington)
Abstract: Let C be a curve of genus g. A fundamental problem in the theory of algebraic curves is to understand maps of C to projective space of dimension r of degree d. When the curve C is general, the moduli space of such maps is well-understood by the main theorems of Brill--Noether theory. However, in nature, curves C are often encountered already equipped with a map to some projective space, which may force them to be special in moduli. The simplest case is when C is general among curves of fixed gonality. Despite much study over the past three decades, a similarly complete picture has proved elusive in this case. In this talk, I will discuss joint work with Eric Larson and Hannah Larson that completes such a picture, by proving analogs of all of the main theorems of Brill--Noether theory in this setting. In the course of our degenerative argument, we'll exploit a close relationship with the combinatorics of the affine symmetric group.
algebraic geometrynumber theory
Audience: researchers in the topic
UCSB Seminar on Geometry and Arithmetic
| Organizers: | Adebisi Agboola, Francesc Castella*, Zheng Liu*, Xiaolei Zhao* |
| *contact for this listing |
