Homological mirror symmetry for chain type invertible polynomials
Umut Varolgüneş (Stanford University)
Abstract: I will start by giving a quick introduction to classical and symplectic Picard-Lefschetz theory. Then, I will explain the homological mirror symmetry (HMS) conjecture regarding invertible polynomials. Finally, I will sketch the A-side computation that goes into proving HMS in the chain type case. This is joint work with A. Polishchuk.
commutative algebraalgebraic geometrynumber theoryrepresentation theory
Audience: advanced learners
UCGEN - Uluslararası Cebirsel GEometri Neşesi
Series comments: Please register for the mailing list through which zoom details will be shared every week: docs.google.com/forms/d/e/1FAIpQLScNud4jzx8zlQgMm_3LglQBwfQANzqieZ0h9lv1wFUUkxxBjg/viewform?vc=0&c=0&w=1
For further information, please feel free to contact Turku Ozlum Celik.
| Organizers: | Alp Bassa, Türkü Özlüm Çelik*, Özgür Esentepe, Ali Özgür Kişisel |
| *contact for this listing |
