Loops in moduli spaces of real plane projective curves
Ayşegül Öztürkalan (Abdullah Gül University)
Abstract: The space of real algebraic plane projective curves of a fixed degree has a natural stratification. The strata of top dimension consists of non-singular curves and are known up to curves of degree 6. Topology and, in particular, fundamental groups of individual strata have not been studied systematically. We study the stratum formed by non-singular sextics with the real part consisting of 9 ovals which lie outside each other and divide the set of complex points. Apparently this stratum has one of the most complicated fundamental groups. In the talk I will study its subgroups which come from strata of singular curves and originates from spaces of linear equivalent real divisors on a real cubic curve.
commutative algebraalgebraic geometrynumber theoryrepresentation theory
Audience: advanced learners
UCGEN - Uluslararası Cebirsel GEometri Neşesi
Series comments: Please register for the mailing list through which zoom details will be shared every week: docs.google.com/forms/d/e/1FAIpQLScNud4jzx8zlQgMm_3LglQBwfQANzqieZ0h9lv1wFUUkxxBjg/viewform?vc=0&c=0&w=1
For further information, please feel free to contact Turku Ozlum Celik.
| Organizers: | Alp Bassa, Türkü Özlüm Çelik*, Özgür Esentepe, Ali Özgür Kişisel |
| *contact for this listing |
