Rigid toric matrix Schubert varieties
Irem Portakal (Otto von Guericke University Magdeburg)
Abstract: In this talk, we introduce the usual torus action on matrix Schubert varieties. In the toric case we show that these varieties arise from a bipartite graph. We study the first order deformations of toric matrix Schubert varieties and we prove that it is rigid if and only if the three-dimensional faces of its associated (edge) cone are all simplicial.
commutative algebraalgebraic geometrynumber theoryrepresentation theory
Audience: advanced learners
UCGEN - Uluslararası Cebirsel GEometri Neşesi
Series comments: Please register for the mailing list through which zoom details will be shared every week: docs.google.com/forms/d/e/1FAIpQLScNud4jzx8zlQgMm_3LglQBwfQANzqieZ0h9lv1wFUUkxxBjg/viewform?vc=0&c=0&w=1
For further information, please feel free to contact Turku Ozlum Celik.
| Organizers: | Alp Bassa, Türkü Özlüm Çelik*, Özgür Esentepe, Ali Özgür Kişisel |
| *contact for this listing |
