Explicit Vologodsky Integration for Hyperelliptic Curves
Enis Kaya (University of Groningen)
Abstract: Let X be a curve over a p-adic field with semi-stable reduction and let ω be a meromorphic 1-form on X. There are two notions of p-adic integration one may associate to this data: the Berkovich–Coleman integral which can be performed locally; and the Vologodsky integral with desirable number-theoretic properties. In this talk, we present a theorem comparing the two, and describe an algorithm for computing Vologodsky integrals in the case that X is a hyperelliptic curve. We also illustrate our algorithm with a numerical example computed in Sage. This talk is partly based on joint work with Eric Katz.
commutative algebraalgebraic geometrynumber theoryrepresentation theory
Audience: advanced learners
UCGEN - Uluslararası Cebirsel GEometri Neşesi
Series comments: Please register for the mailing list through which zoom details will be shared every week: docs.google.com/forms/d/e/1FAIpQLScNud4jzx8zlQgMm_3LglQBwfQANzqieZ0h9lv1wFUUkxxBjg/viewform?vc=0&c=0&w=1
For further information, please feel free to contact Turku Ozlum Celik.
| Organizers: | Alp Bassa, Türkü Özlüm Çelik*, Özgür Esentepe, Ali Özgür Kişisel |
| *contact for this listing |
