Cluster Categories
Emine Yıldırım (Queen's University)
Abstract: Cluster Categories are introduced to understand cluster dynamics from the representation theory point of view. The subject has its roots in two important results in the literature that give us a glimpse of a relationship between cluster dynamics and representation theory. The first is that there is an one-to-one correspondence between the cluster variables of a finite type cluster algebra and the almost positive roots of the corresponding root system. The second is a well-known result by Gabriel that classifies finite representation type quivers by using positive roots of the corresponding root system. In this talk, after giving an overview of cluster categories, I will talk about a recent joint work with Charles Paquette on the generalization of discrete cluster categories.
commutative algebraalgebraic geometrynumber theoryrepresentation theory
Audience: advanced learners
UCGEN - Uluslararası Cebirsel GEometri Neşesi
Series comments: Please register for the mailing list through which zoom details will be shared every week: docs.google.com/forms/d/e/1FAIpQLScNud4jzx8zlQgMm_3LglQBwfQANzqieZ0h9lv1wFUUkxxBjg/viewform?vc=0&c=0&w=1
For further information, please feel free to contact Turku Ozlum Celik.
| Organizers: | Alp Bassa, Türkü Özlüm Çelik*, Özgür Esentepe, Ali Özgür Kişisel |
| *contact for this listing |
