Crystals and cacti in representation theory

Iva Halacheva (Northeastern University)

29-Mar-2022, 14:00-15:00 (4 years ago)

Abstract: One approach to studying the representation theory of Lie algebras and their associated quantum groups is through combinatorial shadows known as crystals. While the original representations carry an action of the braid group, their crystals carry an action of a closely related group known as the cactus group. I will describe how we can realize this combinatorial action both geometrically, as a monodromy action coming from a family of ‘’shift of argument’’ algebras, as well as categorically through the structure of certain equivalences on triangulated categories known as Rickard complexes. Parts of this talk are based on joint work with Joel Kamnitzer, Leonid Rybnikov, and Alex Weekes, as well as Tony Licata, Ivan Losev, and Oded Yacobi.

combinatoricscategory theoryrepresentation theory

Audience: researchers in the topic


The TRAC Seminar - Théorie de Représentations et ses Applications et Connections

Organizers: Thomas Brüstle*, Souheila Hassoun
*contact for this listing

Export talk to