Dual Ramsey properties for classes of algebras
Dragan Masulovic (University of Novi Sad)
Abstract: Almost any reasonable class of finite relational structures has the Ramsey property or a precompact Ramsey expansion. In contrast to that, the list of classes of finite algebras with the precompact Ramsey expansion is surprisingly short. In this talk we show that any nontrivial variety (that is, equationally defined class of algebras) enjoys various dual Ramsey properties. We develop a completely new set of strategies that rely on the fact that left adjoints preserve the dual Ramsey property, and then treat classes of algebras as Eilenberg-Moore categories for a monad. We show that finite algebras in any nontrivial variety have finite dual small Ramsey degrees, and that every finite algebra has finite dual big Ramsey degree in the free algebra on countably many free generators. As usual, these come as consequences of ordered versions of the statements.
computational complexitycategory theorylogic
Audience: researchers in the topic
PALS Panglobal Algebra and Logic Seminar
Series comments: The PALS seminar is a research and learning seminar organized by the algebra and logic research group of the Department of Mathematics at the University of Colorado at Boulder. The scope of the seminar includes all topics with links to algebra, logic, or their applications, like general algebra, logic, model theory, category theory, set theory, set-theoretic topology, or theoretical computer science. Please contact one of the organizers for the Zoom password, to join the mailing list or if you want to speak.
| Organizers: | Keith Kearnes, Peter Mayr*, Marcos Mazari Armida, Agnes Szendrei |
| *contact for this listing |
