Alternating N-continued fraction expansions
Karma Dajani (Universiteit Utrecht)
Abstract: We introduce a family of maps generating continued fractions where the digit 1 in the numerator is replaced cyclically by some given non-negative integers $(N_1, \dots, N_m)$. We prove the convergence of the given algorithm, and study the underlying dynamical system generating such expansions. We prove the existence of a unique absolutely continuous invariant ergodic measure. In special cases, we are able to build the natural extension and give an explicit expression of the invariant measure. For these cases, we formulate a Doeblin-Lenstra type theorem. For other cases we have a more implicit expression that we conjecture gives the invariant density. This conjecture is supported by simulations. For the simulations we use a method that gives us a smooth approximation in every iteration. This is joint work with Niels Langeveld.
dynamical systemsnumber theory
Audience: researchers in the topic
( slides )
Series comments: Description: Online seminar on numeration systems and related topics
For questions or subscribing to the mailing list, contact the organisers at numeration@irif.fr
| Organizers: | Shigeki Akiyama, Ayreena Bakhtawar, Karma Dajani, Kevin Hare, Hajime Kaneko, Niels Langeveld, Lingmin Liao, Wolfgang Steiner* |
| *contact for this listing |
