Torsion Subgroups of Groups with Quadratic Dehn Function
Francis Wagner (Vanderbilt)
Abstract: The Dehn function of a finitely presented group, first introduced by Gromov, is a useful invariant that is closely related to the solvability of the group’s word problem. It is well-known that a finitely presented group is word hyperbolic if and only if it has sub-quadratic (and thus linear) Dehn function. A result of Ghys and de la Harpe states that no word hyperbolic group can have a (finitely generated) infinite torsion subgroup. We show that this property does not carry over to any class of groups of larger Dehn function. In particular, for every m>1 and n sufficiently large (and either odd or divisible by 2^9), there exists a quasi-isometric embedding of the infinite free Burnside group B(m,n) into a finitely presented group with quadratic Dehn function.
algebraic topologydifferential geometrygeneral topologygroup theorygeometric topology
Audience: researchers in the topic
Ohio State Topology and Geometric Group Theory Seminar
Series comments: https://sites.google.com/view/topoandggt
| Organizer: | Rachel Skipper* |
| *contact for this listing |
