Action rigidity of free products of hyperbolic manifold groups

Daniel Woodhouse (University of Oxford)

19-Nov-2020, 16:00-17:00 (5 years ago)

Abstract: Gromov's program for understanding finitely generated groups up to their large scale geometry considers three possible relations: quasi-isometry, abstract commensurability, and acting geometrically on the same proper geodesic metric space. A *common model geometry* for groups G and G' is a proper geodesic metric space on which G and G' act geometrically. A group G is *action rigid* if any group G' that has a common model geometry with G is abstractly commensurable to G. We show that free products of closed hyperbolic surface or 3-manifold groups are action rigid. As a corollary, we obtain torsion-free, Gromov hyperbolic groups that are quasi-isometric, but do not even virtually act on the same proper geodesic metric space.

algebraic topologydifferential geometrygeneral topologygroup theorygeometric topology

Audience: researchers in the topic


Ohio State Topology and Geometric Group Theory Seminar

Series comments: https://sites.google.com/view/topoandggt

Organizer: Rachel Skipper*
*contact for this listing

Export talk to