Quantitative Isoperimetric Inequalities on Riemannian Surfaces

Peter McGrath (North Carolina State University)

01-Sep-2020, 17:00-18:00 (5 years ago)

Abstract: Talk Abstract: In this talk, we introduce a scattering asymmetry which measures the asymmetry of a domain by quantifying its incompatibility with an isometric circle action. We prove a quantitative isoperimetric inequality involving the scattering asymmetry and characterize the domains with vanishing scattering asymmetry by their rotational symmetry. We also give a new proof of the sharp Sobolev inequality for Riemannian surfaces which is independent of the isoperimetric inequality. This is joint work with J. Hoisington.

mathematical physicsanalysis of PDEsclassical analysis and ODEsdifferential geometryfunctional analysis

Audience: researchers in the discipline

( paper )


Online Seminar "Geometric Analysis"

Series comments: We discuss recent trends related to geometric analysis in a broad sense. The general idea is to solve geometric problems by means of advanced tools in analysis. We will include a wide range of topics such as geometric flows, curvature functionals, discrete differential geometry, and numerical simulation.

Registration and links to videos available at blatt.sbg.ac.at/onlineseminar.php

Organizers: Simon Blatt*, Philipp Reiter*, Armin Schikorra*, Guofang Wang
*contact for this listing

Export talk to