A partition relation for well-founded trees by Komjáth and Shelah, and two applications to model theory.

Andrés Villaveces (Universidad Nacional de Colombia)

13-May-2021, 18:00-19:00 (4 years ago)

Abstract: In 2003, Komjáth and Shelah proved a partition theorem on scattered order types; these in turn could be understood as partition relations for classes of well-founded trees. Recently, two different kinds of applications of the same partition relation have been used in infinitary logic and in model theory: one by Väänänen and Velickovic on games related to Shelah’s logic $L^1_\kappa$, another by Shelah and myself on the “canonical tree” of an AEC (a generalization of the Scott sentence for an abstract elementary class). I will describe the Komjáth-Shelah result in the first part and then narrow in the applications (with more details on the second one, from some recent joint work with Shelah). Time permitting, I will also address a third interaction between partition relations and model theoretic issues.

logic

Audience: researchers in the topic


Online logic seminar

Series comments: Description: Seminar on all areas of logic

Organizer: Wesley Calvert*
*contact for this listing

Export talk to