Hilbert polynomials for finitary matroids

Elliot Kaplan (McMaster University)

30-Mar-2023, 18:00-19:00 (20 months ago)

Abstract: Eventual polynomial growth is a common theme in combinatorics and commutative algebra. The quintessential example of this phenomenon is the Hilbert polynomial, which eventually coincides with the linear dimension of the graded pieces of a finitely generated module over a polynomial ring. A later result of Kolchin shows that the transcendence degree of certain field extensions of a differential field is eventually polynomial. More recently, Khovanskii showed that for finite subsets A and B of a commutative semigroup, the size of the sumset A+tB is eventually polynomial in t. I will present a common generalization of these three results in terms of finitary matroids (also called pregeometries). I’ll discuss other instances of eventual polynomial growth (like the Betti numbers of a simplicial complex) as well as some applications to bounding model-theoretic ranks. This is joint work with Antongiulio Fornasiero.

discrete mathematicscombinatoricslogic

Audience: researchers in the topic


Online logic seminar

Series comments: Description: Seminar on all areas of logic

Organizer: Wesley Calvert*
*contact for this listing

Export talk to