Partitions Detect Primes

Ken Ono (University of Virginia)

Tue Jul 29, 06:00-07:00 (5 months ago)

Abstract: This talk presents “partition theoretic” analogs of the classical work of Matiyasevich that resolved Hilbert’s Tenth Problem in the negative. The Diophantine equations we consider involve equations of MacMahon’s partition functions and their natural generalizations. Here we explicitly construct infinitely many Diophantine equations in partition functions whose solutions are precisely the prime numbers. To this end, we produce explicit additive bases of all graded weights of quasimodular forms, which is of independent interest with many further applications. This is joint work with Will Craig and Jan-Willem van Ittersum.

combinatoricsquantum algebrarings and algebrasrepresentation theory

Audience: researchers in the topic


OIST representation theory seminar

Series comments: Timings of this seminar may vary from week to week.

Organizer: Liron Speyer*
*contact for this listing

Export talk to