Rectifiability in Carnot groups
Daniela Di Donato (University of Pavia)
Abstract: Intrinsic regular surfaces in Carnot groups play the same role as $C^1$ surfaces in Euclidean spaces. As in Euclidean spaces, intrinsic regular surfaces can be locally defined in different ways: e.g. as non critical level sets or as continuously intrinsic differentiable graphs. The equivalence of these natural definitions is the problem that we are studying. Precisely our aim is to generalize some results proved by Ambrosio, Serra Cassano, Vittone valid in Heisenberg groups to the more general setting of Carnot groups. This is joint work with Antonelli, Don and Le Donne
analysis of PDEsclassical analysis and ODEsfunctional analysis
Audience: researchers in the topic
OARS Online Analysis Research Seminar
Series comments: Visit our homepage for further information. Some recordings available on YouTube
| Organizers: | Zane Li*, Cosmin Pohoata*, Joris Roos*, Ziming Shi |
| *contact for this listing |
