Mixing time of the switch chain on regular bipartite graphs
Pierre Yousseff (NYU Abu Dhabi)
Abstract: Given a fixed integer d, we consider the switch chain on the set of d-regular bipartite graphs on n vertices equipped with the uniform measure. We prove a sharp Poincar� and log-Sobolev inequality implying that the mixing time of the switch chain is at most O(n log^2n) which is optimal up to a logarithmic term. This improves on earlier results of Kannan, Tetali, Vempala and Dyer et al. who obtained the bounds O(n^13 log n) and O(n^7 log n) respectively. This is a joint work with Konstantin Tikhomirov.
analysis of PDEsmetric geometryprobability
Audience: researchers in the topic
Online asymptotic geometric analysis seminar
Series comments: The link: technion.zoom.us/j/99202255210
If you are interested in giving a talk, please let one of the organizers know. Also, please suggest speakers which you would like to hear talk. Most talks are 50 minutes, but some 20-minute talks will be paired up as well. The talks will be video recorded conditioned upon the speakers' agreement.
Organizers: | Galyna Livshyts*, Liran Rotem*, Dmitry Ryabogin, Konstantin Tikhomirov, Artem Zvavitch |
*contact for this listing |