Existence of potentials for non-traditional cost functions
Kasia Wyczesany (Tel Aviv University)
Abstract: In this talk, we will present a new approach to the problem of existence of a potential for the optimal transport problem and apply it to non-traditional cost functions (i.e. costs that may attain infinite values). As a by-product, we give a new transparent proof of Rockafellar-Ruschendorf theorem. As an example of a non-traditional cost, we discuss the polar cost, which is particularly interesting as it induces the polarity transform and the class of geometric convex functions. This is joint work with S. Artstein-Avidan and S. Sadovsky.
analysis of PDEsmetric geometryprobability
Audience: researchers in the topic
Online asymptotic geometric analysis seminar
Series comments: The link: technion.zoom.us/j/99202255210
If you are interested in giving a talk, please let one of the organizers know. Also, please suggest speakers which you would like to hear talk. Most talks are 50 minutes, but some 20-minute talks will be paired up as well. The talks will be video recorded conditioned upon the speakers' agreement.
Organizers: | Galyna Livshyts*, Liran Rotem*, Dmitry Ryabogin, Konstantin Tikhomirov, Artem Zvavitch |
*contact for this listing |