Volume product, polytopes and finite dimensional Lipschitz-free spaces.
Matthieu Fradelizi (Marne-la-Vallée, Paris)
Abstract: We shall present some results on the volume product of polytopes, including the question of its maximum among polytopes with a fixed number of vertices. Then we shall focus on the polytopes that are unit balls of Lipschitz-free Banach spaces associated to finite metric spaces. We characterize when these polytopes are Hanner polytopes and when two such polytopes are isometric to each others. We also also study the maximum of the volume product in this class. Based on joint works with Matthew Alexander, Luis C. Garcia-Lirola and Artem Zvavitch.
analysis of PDEsmetric geometry
Audience: researchers in the topic
Online asymptotic geometric analysis seminar
Series comments: The link: technion.zoom.us/j/99202255210
If you are interested in giving a talk, please let one of the organizers know. Also, please suggest speakers which you would like to hear talk. Most talks are 50 minutes, but some 20-minute talks will be paired up as well. The talks will be video recorded conditioned upon the speakers' agreement.
Organizers: | Galyna Livshyts*, Liran Rotem*, Dmitry Ryabogin, Konstantin Tikhomirov, Artem Zvavitch |
*contact for this listing |