Spectral Flow of Toeplitz operators and bulk-edge correspondence

Maxim Braverman (Northeastern University)

14-Oct-2020, 19:00-20:00 (4 years ago)

Abstract: We show that the (graded) spectral flow of a family of Toeplitz operators on a complete Riemannian manifold is equal to the index of a certain Callias-type operator. When the dimension of the manifold is even this leads to a cohomological formula for the spectral flow. As an application, we compute the spectral flow of a family of Toeplitz operators on a strongly pseudoconvex domain in $\mathbb{C}^n$. This result is similar to the Boutet de Monvel's computation of the index of a single Toeplitz operator on a strongly pseudoconvex domain. Finally, we show that the bulk-boundary correspondence in a tight-binding model of topological insulators is a special case of our results. At the end I will explain KK-theoretical extension of the main theaorem to families of Toeplitz operators parametrized by an arbitrary compact manifold, obtained by Koen van den Dungen.

geometric topologynumber theoryoperator algebrasrepresentation theory

Audience: researchers in the topic

( video )


Noncommutative Geometry in NYC

Series comments: Noncommutative Geometry studies an interplay between spatial forms and algebras with non-commutative multiplication. Our seminar welcomes talks in Number Theory, Geometric Topology and Representation Theory linked to the context of Operator Algebras. All talks are kept at the entry-level accessible to the graduate students and non-experts in the field. To join us click sju.webex.com/meet/nikolaei (5 min in advance) and igor DOT v DOT nikolaev AT gmail DOT com to subscribe/unsubscribe for the mailing list, to propose a talk or to suggest a speaker. Pending speaker's consent, we record and publish all talks at the hyperlink "video" on speaker's profile at the "Past talks" section. The slides can be posted by providing the organizers with a link in the format "myschool.edu/~myfolder/myslides.pdf". The duration of talks is 1 hour plus or minus 10 minutes.

Organizers: Alexander A. Katz, Igor V. Nikolaev*
*contact for this listing

Export talk to