Vanishing viscosity limit for the compressible Navier-Stokes equations with non-linear density dependent viscosities
Matteo Caggio (Institute of mathematics, Czech Academy of Sciences)
Abstract: In a three-dimensional bounded domain, we consider the compressible Navier-Stokes equations for a barotropic fluid with general non-linear density dependent viscosities and no- slip boundary conditions. A nonlinear drag term is added to the momentum equation. We establish two conditional Kato-type criteria for the convergence of the weak solutions to such a system towards the strong solution of the compressible Euler system when the viscosity coefficient and the drag term parameter tend to zero.
MathematicsPhysics
Audience: researchers in the topic
Nečas Seminar on Continuum Mechanics
Series comments: This seminar was founded on December 14, 1966.
Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague 8. If not written otherwise, we will meet on Mondays at 15:40 in lecture hall K3 (2nd floor)
| Organizers: | Miloslav Feistauer, Petr Knobloch, Martin Kružík*, Šárka Nečasová* |
| *contact for this listing |
